Mechanisms for Neural Signal Enhancement in the Blowfly Compound Eye
نویسنده
چکیده
In the blowfly Calliphora vicina visual signals are enhanced by amplification and antagonism as they pass from the site of phototransduction in the retina to secondorder neurones (LMCs) in the first optic neuropile, the lamina. The mechanisms responsible for amplification and antagonism were investigated, using currentclamp techniques, to examine the conductance mechanisms generating LMC responses. LMCs responded Ohmically to injected current. Voltage-sensitive conductances and feedback mechanisms driven by the potential of a single LMC played a minor role in shaping responses. The LMCs response to an increment in illumination, a transient hyperpolarization, was generated by a large and transient conductance increase with a reversal potential close to the maximum response amplitude (30-40mV below dark resting potential). The depolarization of the LMC in response to a decrement in light intensity was partially generated by a reduction in direct synaptic input from the photoreceptors. Changes in depolarizing conductances with positive reversal potentials played a secondary role, contributing to large-amplitude responses to dimming or light-off, and to the slow decay of the LMC response to steady illumination. Antagonism, including lateral antagonism, operated principally by shutting down the direct photoreceptor input, presumably by presynaptic regulation. The results of dye injection suggested that the identified large monopolar cell L2 is more strongly affected by lateral antagonism than the similar cells LI and L3. We conclude that LMCs are essentially passive integrators of a well-regulated direct input from the photoreceptors. This suggests that the intrinsic properties of photoreceptor-LMC synapses and presynaptic interactions are primarily responsible for amplification and antagonism.
منابع مشابه
The Role of Textual vs. Compound Input Enhancement in Developing Grammar Ability
The present study investigated comparatively the impact of two types of input enhancement (i.e. textual vs. compound enhancement) on developing grammar ability in Iranian EFL setting. Sixty-five female secondary high school students were selected as a homogenous sample out of about a 100-member population based on Nelson language proficiency test. Then, their grammar ability was measured based ...
متن کاملA motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli.
In the blowfly Calliphora vicina, lobula plate tangential cells (LPTCs) estimate self-motion by integrating local motion information from the compound eyes. Each LPTC is sensitive to a particular (preferred) rotation of the fly's head. The fly can also sense rotation using its three ocelli (simple eyes), by comparing the light intensities measured at each ocellus. We report that an individually...
متن کاملTransfer of graded potentials at the photoreceptor-interneuron synapse
To characterize the transfer of graded potentials and the properties of the associated noise in the photoreceptor-interneuron synapse of the blowfly (Calliphora vicina) compound eye, we recorded voltage responses of photoreceptors (R1-6) and large monopolar cells (LMC) evoked by: (a) steps of light presented in the dark; (b) contrast steps; and (c) pseudorandomly modulated contrast stimuli at b...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005